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Abstract. In this work we show how to construct symmetries for the differential-difference
equations associated with the discrete Schrödinger spectral problem. We find the whole set of
symmetries which in the continuous limit go into the Lie point symmetries of the corresponding
partial differential equation, i.e. the Korteweg–de Vries equation. Among these, of particular
relevance, is the non-autonomous symmetry which, in the continuous limit, goes into the dilation
symmetry for the corresponding equation. Unlike the continuous case, this symmetry turns out to
be a master symmetry, thus belonging to the infinite-dimensional group of generalized symmetries.

1. Introduction

Nonlinear differential-difference equations are always very important in applications. They
enter as models for many biological chains, are encountered frequently in queuing problems
and as discretizations of field theories. So, both as themselves and as approximations of
continuous problems, they play a very important role in many fields of mathematics, physics,
biology and engineering.

Not many tools are available to solve such kinds of problems. Apart from a few exceptional
cases the solution of nonlinear differential-difference equations can only be obtained by
numerical calculations or by going to the continuous limit when the lattice spacing vanishes and
the system is approximated by a continuous nonlinear partial differential equation. Exceptional
cases are those equations which, in a way or another, are either linearizable or integrable via
the solution of an associated spectral problem on the lattice. In such cases we can write down a
denumerable set of exact solutions corresponding to symmetries of the nonlinear differential-
difference equations. Such symmetries can either depend just on the independent variable
and on the dependent variable in the generic point of the latticen and are denoted as point
symmetries or depend on the dependent field in neighbouring positions of the lattice and in
this case we speak of generalized symmetries [1]. Any differential-difference equation can
have point symmetries, but the existence of generalized symmetries is usually associated only
with the integrable ones.

In the case of pure differential equations the difference between point and generalized
symmetries is very clear [2, 3]. The classical definition of a point symmetry requires that the
infinitesimal generators of the Lie point symmetry group depend only on the independent and
dependent variables and not on their derivatives. This implies that the finite group of Lie point
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transformations which leaves the differential equation invariant is obtained by integrating a
quasilinear partial differential equation of first order which can be solved generically on the
characteristics. In the case of generalized symmetries, the infinitesimal generators also depend
on the derivatives of the dependent fields with respect to the independent variables and thus
the partial differential equation whose solution would give the group transformation is no
longer of first order. Moreover, point symmetries form a closed finite group while generalized
symmetries form an infinite-dimensional group.

In the case of difference equations, i.e. when at least one of the independent variables
varies discretely, one can consider the intrinsic point symmetries as a direct counterpart of
the Lie point symmetries [4, 5]. In this case the discrete independent variable is not changed
by the transformation. The point transformations act only on the continuous variables, be
they independent or dependent. However, the transformation may depend parametrically on
the discrete variables and the infinitesimal generators of the symmetries, consequently, may
have a non-trivial dependence on the discrete variable. As shown in [6] the symmetry group
thus obtained is a subgroup of the symmetry group of the differential equations to which the
differential-difference equation goes in the continuous limit.

In the case of linear difference equations (and consequently linear differential-difference
equations) one can construct a sequence of linear operators which have the same symmetry
algebra as that for the corresponding linear differential equation [7]. Consequently, one can
think of extending the formalism introduced to construct intrinsic symmetries so as to include all
symmetries that have as a continuous limit point symmetries [8]. This requires the construction
of symmetries whose infinitesimal generators depend on the dependent variable computed at
different points of the lattice. We will call such symmetriesextended point symmetries. From
the point of view of the definition applied in the case of differential equations, the extended
point symmetries are generalized symmetries.

In [8] it was shown that in the evolutionary approach to symmetries, which unifies both
point and generalized symmetries, one can recover the extended point symmetries for linear
equations but only partially for a generic nonlinear difference equation. In a subsequent work
it has been shown how one can find extended point symmetries in the case of the discrete
Burgers equation, a nonlinear linearizable equation [9].

Here we consider integrable equations associated with the discrete Schrödinger spectral
problem. We construct the symmetries for the given integrable nonlinear differential-difference
equations by looking for commuting flows. To obtain the commuting flows we study the
spectral transform, which associates to each evolution equation belonging to the class of
evolutions compatible with the discrete Schrödinger spectral problem, an evolution of the
spectral data. The study of commuting spectral data allows us to associate to any nonlinear
differential-difference equation a class of symmetries. These symmetries are split into two
categories: one in which the eigenvalues are not evolving in the group parameter space and
thus are represented by autonomous generators, depending on the dependent variable in a finite
set of different points of the lattice, i.e. pure generalized symmetries. There are a denumerable
set of these symmetries. Then we have the case when the eigenvalue depends on the group
parameter. In this case the infinitesimal symmetry generators depend on the discrete variable;
such symmetries, in the continuous limit, give rise to point symmetries.

In section 2 we review the results on the discrete Schrödinger spectral problem and on the
associated class of differential-difference equations. In section 3 we introduce the evolutionary
infinitesimal symmetry generators and show how they can be constructed by building up
flows (in the group parameters) commuting with the differential-difference equations. We
then construct commuting flows in the space of the spectral data and write down the local
evolutionary symmetry generators associated with the Toda lattice hierarchy [10] and its
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reduction, the Volterra hierarchy. In section 4 we carry out the continuous limit and prove
that the extended point symmetries go over to point symmetries in the continuous limit which
carries the Toda lattice into the Korteweg–de Vries equation. Section 5 is devoted to some
concluding remarks.

2. Discrete Schr̈odinger spectral problem and its associated differential-difference
equations

The discrete Schrödinger spectral problem [11–13] was studied a long time ago as it is
associated with the well known Toda lattice equation, the first differential-difference equation
which has been proved to be integrable. For the sake of completeness we present in this section
the main results which are relevant for the construction of the symmetries.

The discrete Schrödinger spectral problem reads

ψ(n− 1, t; λ) +B(n, t) ψ(n, t; λ) +A(n, t) ψ(n + 1, t; λ) = λψ(n, t; λ) (2.1)

whereλ, which can be written asλ = z + 1/z, is a spectral parameter;A(n, t) andB(n, t) are
two functions depending on the integer variablen and parametrically on a real variablet with
the asymptotic conditions

lim
|n|→∞

A(n, t)− 1= lim
|n|→∞

B(n, t) = 0. (2.2)

To the discrete Schrödinger spectral problem we can associate the following class of
nonlinear evolution equations:(
Ȧ(n, t)

Ḃ(n, t)

)
= f1(L, t)

(
A(n, t)[B(n, t)− B(n + 1, t)]

A(n− 1, t)− A(n, t)
)

+f2(L, t)
(

A(n, t)[(2n + 3)B(n + 1, t)− (2n− 1)B(n, t)]

B2(n, t)− 4 + 2[(n + 1)A(n, t)− (n− 1)A(n− 1, t)]

)
(2.3)

where by a dot we mean a partial derivative with respect to thet-variable andf1 andf2 are
two arbitrary entire functions of the recursive operatorL:

L
(
P(n)

Q(n)

)
=
(
P(n)B(n + 1, t) +A(n, t)[Q(n) +Q(n + 1)] + [B(n, t)− B(n + 1, t)]S(n)

B(n, t)Q(n) + P(n) + S(n− 1)− S(n)
)

(2.4a)

with S(n) the asymptotically bounded solution of the non-homogeneous first-order difference
equation

S(n + 1) = A(n + 1, t)

A(n, t)
[S(n)− P(n)]. (2.4b)

In correspondence with the non-local evolution equations (2.3) we have

ψ̇(n, t; λ) = Mψ(n, t; λ) +ψ(n, t; λ)0(λ, t) (2.5)

λ̇ = (λ2 − 4)f2(λ, t) (2.6)

where (see [13])

Mψ(n, t; λ) = −f1(O, t)A(n, t)ψ(n + 1, t; λ)− f2(O, t)
(
nψ(n− 1, t; λ)

+

[
nB(n, t)−

∞∑
j=n+1

B(j, t)

]
ψ(n, t; λ)− nA(n, t) ψ(n + 1, t; λ)

)
(2.7)
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with the operatorO related to the action ofL given by (2.4a) defined by

Oϕ(n) = ϕ(n− 1) +

[
B(n, t)−

∞∑
j=n

Q(j)

]
ϕ(n)

+
A(n, t)

A(n + 1, t)
[A(n + 1, t) + S(n + 1)]ϕ(n + 1). (2.8)

The function0(λ) is determined by the asymptotic behaviour ofψ .
WheneverA(n, t) andB(n, t) satisfy the boundary conditions (2.2), the spectrum of (2.1)

consists of the unit circle in thez complex plane,C1, plus a finite number of isolated points
zj insideC1. The spectral data which allow us to recover uniquely the potentialsA(n, t) and
B(n, t) are given by

{R(z, t), z ∈ C1; zj , cj , |zj | < 1, j = 1, 2, . . . , N} (2.9)

with the ‘reflection’ coefficientR(z, t) defined, as usual, by

ψ(n, t; λ) ∼ z−n +R(z, t)zn n→ +∞ (2.10)

while the coefficientscj are defined by the asymptotic behaviour of the bound state
eigenfunctions and are related to the residues of the reflection coefficientR(z, t) at the points
zj .

In correspondence with the compatible integrable evolution (2.3) of the fieldsA(n, t),
B(n, t) we obtain an evolution of the spectrum. We have that

0(λ) = f1(λ, t)z
−1− µ2 d

dλ
f2(λ, t) µ = z−1− z (2.11)

dR(z, t)

dt
= µf1(λ, t)R(z, t) (2.12)

where, from now on, d/dy denotes a total derivative with respect toy for any variabley.
Let us remark that formally we can extend still further the class of equations (2.3) associated

with the spectral problem (2.1) as(
A(n, t)[(2n + 3)B(n + 1, t)− (2n− 1)B(n, t)]

B2(n, t)− 4 + 2[(n + 1)A(n, t)− (n− 1)A(n− 1, t)]

)
= L

(
2A(n, t)
B(n, t)

)
− 4

(
0
1

)
= (L2 − 4)

(
0
1

)
(2.13)

having takenS(n) = −nA(n) as a solution for equation (2.4b) for P(n) = A(n). Taking into
account formula (2.13), equation (2.3) can be written as(
Ȧ(n, t)

Ḃ(n, t)

)
= f1(L, t)

(
A(n, t)[B(n, t)− B(n + 1, t)]

A(n− 1, t)− A(n, t)
)

+ f3(L, t)
(

0
1

)
(2.14)

where equation (2.3) is recovered by choosingf3(L, t) = f2(L, t)(L2 − 4).
WheneverB(n, t) = 0, the class of equations associated with the spectral problem (2.1)

reduces to the Volterra hierarchy. This is obtained by restricting the functionsf1 andf2 to odd
functions, i.e.

Ȧ(n, t) = g1(L̃, t){A(n, t)(A(n− 1, t)− A(n + 1, t))} + g2(L̃, t){A(n, t)[A(n, t)
−(n− 1)A(n− 1, t) + (n + 2)A(n + 1, t)− 4]} (2.15)

where

L̃P(n) = A(n, t)[P(n) + P(n + 1) + S(n− 1)− S(n + 1)] (2.16)
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with S(n) given by equation (2.4b). Due to the boundary condition introduced to solve
equation (2.4b), equations (2.15) with the recursive operator (2.16) have the correct spectral
data and are different from those considered in the usual literature. The spectral data are
defined in the same way as for the unreduced case. Equation (2.6) becomes

λ̇ = (λ2 − 4)g2(λ
2, t)λ (2.17)

and equation (2.12) now reads

dR(z, t)

dt
= µλg1(λ

2, t)R(z, t). (2.18)

As for the case of the Toda hierarchy, in this case we can also extend the class of non-
isospectral terms in (2.14) by noting that

A(n, t)[A(n, t)− (n− 1)A(n− 1, t) + (n + 2)A(n + 1, t)− 4] = (L̃− 4)A(n) (2.19)

having takenS(n) = −nA(n) as a solution for equation (2.4b) for P(n) = A(n).

3. Symmetries

The classical theory of Lie [2, 3] tells us that the symmetries, i.e. the group of point
transformations for differential equations, are obtained by exponentiating the infinitesimal
generators. For the sake of simplicity of exposition we consider here just one ordinary
differential equation of second order for one independent and one dependent variable but
all the results are valid in more general cases. Defining the infinitesimal generators as

X̂ = ξ(x, u)∂x + φ(x, u)∂u (3.1)

whereξ andφ are the coefficients of the generators depending just on the dependent and
independent variables, a given equation

F(x, u, ux, uxx) = 0 (3.2)

admits the following one-parameter group of transformations:

x̃ = eεX̂x ũ = eεX̂u (3.3)

if

pr(2) X̂F |F=0 = 0 (3.4)

where by pr(2) X̂ we mean the second prolongation of the vector fieldX̂.
The group of transformations (3.3) can also be obtained by solving the system of

differential equations

dx̃

dε
= ξ(x̃, ũ) dũ

dε
= φ(x̃, ũ) (3.5)

with the initial conditionsx̃(ε = 0) = x, ũ(ε = 0) = u.
Given the differential equation (3.2), equation (3.4) provides a set of overdetermined linear

differential equations whose solution gives the infinitesimal generators and thus the group of
transformations. It can be easily shown that the same class of transformations can be obtained
by considering instead of the infinitesimal generator (3.1) the following operator:

X̂e = [φ(x, u)− ξ(x, u)ux ]∂u (3.6)
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which corresponds to a transformation

x̃ = x ũ = eεX̂eu (3.7)

i.e. all the changes are contained in the evolution of the dependent variable. Thus this approach
is called an evolutionary formalism. This case is, in principle, simpler as we are considering
only transformations of the dependent variables. However, we pay a price as equations (3.5),
which we have to solve to obtain the group of transformations, are now replaced by a quasilinear
partial differential equation of first order, integrable on the characteristics

dũ

dε
= ∂ũ

∂ε
= φ(x, ũ)− ξ(x, ũ) ∂ũ

∂x
ũ(ε = 0) = u. (3.8)

The main advantage of the use of the evolutionary formalism for the construction of
symmetries relies on the fact that, apart from the simplicity of the construction of the
prolongation, it is easily extendible to more general transformations when the infinitesimal
generators depend on the derivatives of the dependent variable with respect to the independent
one, i.e. on the generalized symmetries. In such a case, we can define

X̂e = Q(x, u, ux, uxx, . . .)∂u (3.9)

and equation (3.4) reads

∂F

∂u
Q +

∂F

∂ux
DxQ +

∂F

∂uxx
D2
xQ

∣∣∣∣
F=0

= 0 (3.10)

whereDx is the total derivative operator in thex variable:

Dx = ∂x + ux∂u + uxx∂ux + · · · . (3.11)

The group transformations are obtained by solving the partial differential equations:

dũ

dε
= Q(x, ũ, ũx, ũxx, . . .) (3.12)

with the boundary conditioñu(x, ε = 0) = u(x), whereu(x) is the solution of equation (3.2).
It is easy to show that equation (3.10) can be obtained by considering the compatibility of
equation (3.12) with equation (3.2) written out foru substituted bỹu. This implies that the
admissible symmetries of the given equation (3.2) are obtained as flows in the variableε

compatible with the equation under study. This point of view allows us not only to extend
the class of symmetries under study from point to generalized, but also the class of equations
from purely differential to functional equations and, in particular, differential-difference or
difference equations. In fact, it is possible, in principle, to construct compatible flows for any
kind of functional equations. If these compatible flows exist then we have the infinitesimal
generators of the symmetries. To construct the symmetries, i.e. the group of transformations,
we need to solve the equivalent of equation (3.12). It is easy to show that the solution of
equation (3.12) we obtain by power-series expansion, i.e. setting

ũ(x, ε) =
∞∑
j=0

εj ũj (x) ũ0(x) = u(x) (3.13)

is equivalent to the exponential representation

ũ(x, ε) = exp(εX̂ε)u(x) (3.14)

thus proving the validity of equation (3.7) for generalized symmetries.
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Let us, for example, consider the following difference equation:

F(x, u(x),1xu(x),1
2
xu(x)) = 0. (3.15)

where

1xu(x) = u(x + σ)− u(x)
σ

(3.16)

whereσ is a constant parameter such that asσ → 0,1xu(x) = d
dx u(x).

Let us introduce an infinitesimal evolutionary generator whose coefficientQmay depend
onx, σ andu(x) at various points in the lattice. Then

du

dε
= Q(x, σ, {u(x + kσ, ε)}bk=−a) (3.17)

wherea and b are two integers defining the span of the symmetry.Q is an infinitesimal
coefficient for a symmetry of equation (3.15), if equation (3.15) and equation (3.17) are
compatible, i.e.

F,u(x)Q + F,1xu1
T
x Q + F,12

xu
(1T

x )
2Q|F=0 = 0 (3.18)

where by1T
x Q we mean the total variation ofQ with respect tox given by

1T
x Q

(
x, σ, {u(x + kσ, ε)}bk=−a

) = 1

σ

[
Q
(
x + σ, σ, {u(x + kσ, ε)}b+1

k=−a+1

)
−Q(x, σ, {u(x + kσ, ε)}bk=−a

]
. (3.19)

Given equation (3.15), equation (3.18) is an equation forQ, i.e. the symmetry, and vice versa,
given the symmetry (3.17), equation (3.18) defines the class of equations (3.15) which have
that symmetry. As shown in [8], it is not easy to find a non-trivial solution of equation (3.18)
for a general discrete equation unless one restricts the class of symmetry one is looking for,
i.e. the form ofQ.

Here, in the following we show that in the case of integrable differential-difference
equations we can always construct all the symmetries using their integrability properties.
In fact, it is well known that different flows associated with different isospectralt-evolutions
for a given spectral problem, be they discrete or continuous, are commuting among themselves
[14]. Thus considering the group parameter as at-variable, we find that for a given isospectral
equation (2.3):(

Ȧ(n, t)

Ḃ(n, t)

)
= f1(L)

(
A(n, t)[B(n, t)− B(n + 1, t)]

A(n− 1, t)− A(n, t)
)

(3.20)

we can associate the following symmetries:(
Aεk (n, t)

Bεk (n, t)

)
= Lk

(
A(n, t; εk)[B(n, t; εk)− B(n + 1, t; εk)]

A(n− 1, t; εk)− A(n, t; εk)
)

(3.21)

for any integerk†. The existence of non-isospectral deformations implies that we can construct
other symmetries. As we are not interested in non-local symmetries, we have to limit ourselves

† An easy proof of this proposition can be given by taking into account the spectral transform. In fact, in this case
to the two flows (3.20) and (3.21) there corresponds the following evolution of the spectrum: dR(z, t, εk)/dt =
µf1(λ)R(z, t, εk); dR(z, t, εk)/dεk = µλkR(z, t, εk) which are easily shown to commute.
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to f2 constant in equation (2.3). So we can associate with equation (3.20) the following
symmetries:(
Aε(n, t; ε)
Bε(n, t; ε)

)
= tf3(L)

(
A(n, t; ε)[B(n, t; ε)− B(n + 1, t; ε)]

A(n− 1, t; ε)− A(n, t; ε)
)

+α

(
A(n, t; ε)[(2n + 3)B(n + 1, t; ε)− (2n− 1)B(n, t; ε)]

B2(n, t; ε)− 4 + 2[(n + 1)A(n, t; ε)− (n− 1)A(n− 1, t; ε)
)

(3.22a)

with α a group parameter,f3(L) given by

f3(L) = α
[
(L2 − 4)

∂f1

∂L
(L) + Lf1(L)

]
(3.22b)

and

λε = αµ2. (3.22c)

We prove the validity of equation (3.22a) in the same way as we did for equation (3.21), by
requiring that the spectrum of thet-flow and theε-flow commute. By direct calculation it is
easy to prove that

dR(z, t; ε)
dε

= µαt[λf1(λ) + (λ2 − 4)f1,λ(λ)
]
R(z, t; ε) (3.23)

and (2.12) are compatible. As one can show from equation (2.13), one can add two further
terms to equation (3.22a) given by

β

(
2A(n, t; ε)
B(n, t; ε)

)
+ γ

(
0
1

)
. (3.24)

However, wheneverγ andβ are different from zero, we have not been able to write down
a general expression forf3(L) as a function ofγ , β andf1(L). In such a case the value of
f3(L) has to be calculated directly for each equation in the hierarchy. The equation for the
ε-evolution ofλ is given by

λε = αµ2 + βλ + γ. (3.25)

As an example let us consider the particularly interesting case off1(λ) = 1, which
corresponds to the case of the Toda lattice. In this case equation (3.20) is nothing else but the
system representation of the Toda lattice and with the definition

B(n, t) = u̇(n, t) A(n, t) = eu(n,t)−u(n+1,t) (3.26)

it reduces to the well known Toda equation

ü(n, t) = eu(n−1,t)−u(n,t) − eu(n,t)−u(n+1,t). (3.27)

In this case equation (3.22a), including the terms (3.24), can be written as(
Aε(n, t; ε)
Bε(n, t; ε)

)
= α

(
A(n, t; ε)[(2n + 3)B(n + 1, t; ε)− (2n− 1)B(n, t; ε)]

B2(n, t; ε)− 4 + 2[(n + 1)A(n, t; ε)− (n− 1)A(n− 1, t; ε)
)

+β

(
2A(n, t; ε)
B(n, t; ε)

)
+ γ

(
0
1

)
+ βt

(
Ȧ(n, t; ε)
Ḃ(n, t; ε)

)
+αt

(
A(n, t; ε)[A(n− 1, t; ε)− A(n + 1, t; ε) +B2(n, t; ε)− B2(n + 1, t; ε)]

A(n− 1, t; ε)(B(n− 1, t; ε) +B(n, t; ε))− A(n, t; ε)(B(n, t; ε) +B(n + 1, t; ε))
)

(3.28)
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which provides three different infinitesimal generators:

X̂1 = ∂B(n,t) (3.29a)

X̂2 = [tȦ(n, t) + 2A(n, t)]∂A(n,t) + [tḂ(n, t) +B(n, t)]∂B(n,t) (3.29b)

X̂3 = {t [A(n− 1, t)− A(n + 1, t) +B2(n, t)− B2(n + 1, t)]

+(2n + 3)B(n + 1, t)− (2n− 1)B(n, t)}A(n, t)∂A(n,t)
+{t [A(n− 1, t)(B(n− 1, t) +B(n, t))− A(n, t)(B(n, t)
+B(n + 1, t))] + B2(n, t)− 4 + 2[(n + 1)A(n, t)− (n− 1)A(n− 1, t)]}∂B(n,t).

(3.29c)

The symmetrieŝX1 andX̂2 correspond to intrinsic point symmetries as there is no dependence
on shifted variables, whilêX3 is a dilation-like symmetry, an extended point symmetry.
Another intrinsic Lie point symmetry can be obtained from (3.21) fork = 0 and reads

X̂4 = Ȧ(n, t)∂A(n,t) + Ḃ(n, t)∂B(n,t). (3.29d)

Using (3.26) we can transform (3.29) in the form of symmetries for the Toda lattice
equation (3.27). It is more convenient to start from (3.20) and (3.28) using the evolution of
B(n, t)with respect to the group parameter and the relation ofA(n, t),B(n, t) tou(n, t) given
by (3.26). In such a case we have

u̇ε(n, t) = δü(n, t) + 2β[u̇(n, t) + t ü(n, t)] + γ + α{teu(n−1,t)−u(n,t)[u̇(n− 1, t) + u̇(n, t)]

−teu(n,t)−u(n+1,t)[u̇(n, t) + u̇(n + 1, t)] + u̇2(n, t)− 4

+2(n + 1)eu(n,t)−u(n+1,t) − 2(n− 1)eu(n−1,t)−u(n,t)}.
Forα = 0 we can integrate with respect to thet-variable and using theε-evolution ofA(n, t, ε)
given by (3.28) we obtain

uε(n, t) = δu̇(n, t) + β(tu̇(n, t)− 2n) + γ t + ω (3.30)

the four-dimensional intrinsic Lie point group of the Toda lattice equation [5, 6].
For β = δ = γ = 0 andα = 1 taking into account the evolution forA(n, t; ε) in

equation (3.28) we obtain

uε(n, t)− uε(n + 1, t) = t [eu(n−1,t)−u(n,t) − eu(n+1,t)−u(n+2,t) + u̇(n, t)2 − u̇(n + 1, t)2]

+u̇(n + 1, t)(2n + 3)− u̇(n, t)(2n− 1)

and by ‘integration’ with respect to the discrete variable

uε(n, t) = t [eu(n−1,t)−u(n,t) + eu(n,t)−u(n+1,t) + u̇2(n, t)− 2]

−u̇(n, t)(2n− 1) + 2
∞∑

j=n+1

u̇(j, t). (3.31)

Unlike equation (3.30), equation (3.31) corresponds to an extended Lie point symmetry and it
is non-local.

For the sake of completeness, we will write down the algebra satisfied by the symmetry
operatorsX̂1, X̂2, X̂3, X̂4 for the Toda lattice expressed in a system form in (3.29). To do so,
we have, following [8], to apply the prolonged symmetry operator and then to project it into
the{An,Bn} space. The resulting commutation relations which are different from zero are

[X̂1, X̂2] = X̂1 [X̂1, X̂3] = 2X̂2 [X̂2, X̂3] = 8X̂1 + X̂3 [X̂2, X̂4] = X̂4
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andX̂3 with X̂4 give rise to a higher symmetry, showing thatX̂3 is a master symmetry [15].
Thus, whenever̂X3 andX̂4 are both present, we have an infinite-dimensional algebra. A closed
Lie algebra can be obtained by considering either{X̂1, X̂2, X̂3} or {X̂1, X̂2, X̂4}. Considering
now the Toda lattice equations (3.27), the symmetry generators (3.30) and (3.31) read

X1 = u̇(n, t)∂u(n,t)
X2 = (tu̇(n, t)− 2n)∂u(n,t)

X3 = t∂u(n,t)
X4 = ∂u(n,t)
X5 =

{
t [eu(n−1,t)−u(n,t) + eu(n,t)−u(n+1,t) + u̇2(n, t)− 2]

−(2n− 1)u̇(n, t) + 2
∞∑

j=n+1

u̇(j, t)

}
∂u(n,t)

(3.32)

and the resulting commutation relations which are different from zero are

[X1, X2] = −X1 [X1, X3] = −X4 [X2, X3] = −X3

[X2, X5] = 4X3 +X5 [X3, X5] = 2X2.

The commutation relation betweenX1 andX5 gives a new symmetry,

X6 = eu(n−1,t)−u(n,t) + eu(n,t)−u(n+1,t) + u̇2(n, t)− 2

which does not form a closed Lie algebra together with the other symmetries(X1, . . . , X5).
Let us now consider the case of the Volterra hierarchy. Given an equation of this hierarchy:

Ȧ(n, t) = g1(L̃)
{
A(n, t)[A(n− 1, t)− A(n + 1, t)]

}
(3.33)

we can construct the infinite set of symmetries parametrized by an integer indexk, obtained
by considering the isospectral commuting flows:

Aεk (n, t; εk) = (L̃)k
{
A(n, t; εk)[A(n− 1, t; εk)− A(n + 1, t; εk)]

}
(3.34)

and by considering the non-isospectral terms:

Aε(n, t; ε) = αA(n, t; ε)[A(n, t; ε)− (n− 1)A(n− 1, t; ε) + (n + 2)A(n + 1, t; ε)− 4]

+tg3(L̃)
{
A(n, t; ε)[A(n− 1, t; ε)− A(n + 1, t; ε)]} (3.35a)

with

g3(L̃) = α
[
(L̃− 2)g1(L̃) + L̃(L̃− 4)

dg1

dL̃
(L̃)

]
(3.35b)

and

λε = 1
2αλµ

2. (3.35c)

From equation (2.19) one can add one further term to equation (3.35a) given byβA(n, t; ε).
Moreover, wheneverβ is different from zero the expression ofg3(L̃) cannot be written down
explicitly in terms ofg1(L̃) in the general case. In such a case the value ofg3(L̃) has to be
calculated directly for each equation in the hierarchy. The equation for theε-evolution ofλ is
given by

λε = 1
2αλµ

2 + 1
2βλ. (3.36)
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In the particular case of the Volterra equation, corresponding tog1(L̃) = 1, apart from
those symmetries given by equation (3.34), we have

Aε(n, t; ε) = β{tȦ(n, t; ε) +A(n, t; ε)} + αA(n, t; ε){A(n, t; ε)− (n− 1)A(n− 1, t; ε)
+(n + 2)A(n + 1, t; ε)− 4 + t [A(n− 1, t; ε)(A(n− 2, t; ε)
+A(n− 1, t; ε) +A(n, t; ε)− 4)− A(n + 1, t; ε)(A(n + 2, t; ε)
+A(n + 1, t; ε) +A(n, t; ε)− 4)]}. (3.37)

The case whenα = 0 gives an intrinsic Lie point symmetrŷX1 = [tȦ(n, t) +A(n, t)]∂A(n,t),
while whenβ = 0 we get an extended dilation-like Lie point symmetry, with generator

X̂2 = A(n, t){A(n, t)− (n− 1)A(n− 1, t) + (n + 2)A(n + 1, t)− 4

+t [A(n− 1, t)(A(n− 2, t) +A(n− 1, t) +A(n, t)− 4)

−A(n + 1, t)(A(n + 2, t) +A(n + 1, t) +A(n, t)− 4)]}∂A(n,t). (3.38)

A third intrinsic symmetry is given byX̂3 = Ȧ(n, t)∂A(n,t), while the remaining
symmetries are generalized. It is also interesting to consider explicitly the case of a higher
Volterra equation which has as a direct continuous limit the Korteweg–de Vries equation [6],
corresponding tog1(L̃) = L̃− 4 and given by

Ȧ(n, t) = A(n, t){A(n− 1, t)[A(n, t) +A(n− 1, t) +A(n− 2, t)− 6]

−A(n + 1, t)[A(n, t) +A(n + 1, t) +A(n + 2, t)− 6]}. (3.39)

In this case the lowest-order symmetries from the isospectral ones (3.34) and the non-
isospectral ones (3.35a) give

X̂1 = A(n, t)[A(n− 1, t)− A(n + 1, t)]∂A(n,t) (3.40a)

X̂2 = Ȧ(n, t)∂A(n,t) (3.40b)

X̂3 = A(n, t){1 + 2t [A(n− 1, t)(A(n, t) +A(n− 1, t)

+A(n− 2, t)− 3)− A(n + 1, t)(A(n, t)

+A(n + 1, t) +A(n + 2, t)− 3)]}∂A(n,t) (3.40c)

X̂4 = A(n, t){A(n, t)− (n− 1)A(n− 1, t) + (n + 2)A(n + 1, t)− 4

2t [A(n− 1, t)(A(n− 2, t)(A(n− 3, t) +A(n− 2, t) +A(n− 1, t))

+(A(n− 2, t) +A(n− 1, t) +A(n, t))(A(n− 1, t) +A(n, t)− 7) + 12)

−A(n + 1, t)(A(n + 2, t)(A(n + 3, t) +A(n + 2, t)

+A(n + 1, t)) + (A(n + 2, t) +A(n + 1, t)

+A(n, t))(A(n + 1, t) +A(n, t)− 7) + 12)]}∂A(n,t). (3.40d)

Let us notice that equation (3.39) has only one intrinsic Lie point symmetryX̂2. All the
other symmetries we wrote down are extended. Apart from the one we write down there are
an infinite number of generalized ones obtained by choosingk > 2 in (3.34).

For the higher Volterra equation (3.39), the commutation relations among the symmetry
operatorsX̂1, X̂2, X̂3, X̂4 which are different from zero are:

[X̂1, X̂3] = −X̂1 [X̂1, X̂4] = −2X̂1− X̂2

[X̂2, X̂3] = −2(3X̂1 + X̂2) [X̂3, X̂4] = 4X̂3 + X̂4

while the commutator of̂X2 andX̂4 give a higher symmetry, thus showing thatX̂4 is a master
symmetry. A closed Lie algebra can be obtained by considering just{X̂1, X̂2, X̂3}.
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4. Continuous limits: the Toda and higher Volterra equations versus the
Korteweg–de Vries equation

In this section we complete the work started in [6] showing that the extra symmetries we wrote
down in the previous section are exactly those necessary to complete the description of the
point symmetries of the Korteweg–De Vries equation. One could consider here the limit of the
whole hierarchies, be it the Toda lattice hierarchy or the Volterra one, however, this is beyond
the scope of this paper and partly, concerning the equations, it has been done elsewhere [16].

Let us start from the Toda lattice (3.27). Its continuous limit into the potential Korteweg–
de Vries equation

vxτ = vxxxx + 6vxvxx (4.1)

is obtained by setting [6]

u(n, t) = − 1
21v(x, τ ) x = (n− t)1 τ = − 1

241
3t. (4.2)

The symmetries (3.30) give the translational and the Galilean boost symmetries. Let us
now analyse the symmetry (3.28). By taking into account the definitions (4.2), considering
X5− 2X3, we get the following continuous limit:

vε(x, τ ) = xvx(x, τ ) + 3τvτ (x, τ ) + v(x, τ ) (4.3)

the dilation symmetry of the potential Korteweg–de Vries equation. The symmetryX6−2X4−
2X1 gives in the continuous limit the time translation.

Let us now consider the case of the higher Volterra equation given by (3.39). In this case

A(n, t) = 1 +12q(x, τ ) x = n1 τ = −213t (4.4)

reduces (3.39) to the Korteweg–de Vries equation

qτ = qxxx + 6qqx. (4.5)

The only intrinsic Lie point symmetry of (3.39) is given by (3.40b) and in the continuous
limit providesX = qτ ∂q (as already shown in [6]). Equation (3.40a) givesX = qx∂q , the space
translation. Equation (3.40c) givesX = (1 + 6τqx)∂q , the Galilean boost and equation (3.40d)
givesX = (xqx + 2q + 3τqτ )∂q .

5. Conclusions

In this paper we have shown how, using the integrability properties of the Toda lattice hierarchy
and its subhierarchy, the Volterra hierarchy, we have been able to construct for them a set
of symmetries whose continuous limits are point symmetries. In the discrete case these
symmetries are not all intrinsic Lie point symmetries; some of them are extended Lie point
symmetries and are associated with non-isospectral deformations of the underlying spectral
problem. However, in the examples we have considered here, the symmetry which goes
in the continuous limit into a dilation, turns out to be a master symmetry, thus generating
all higher symmetries, Thus a closed Lie algebra for discrete equations does not contain
dilations. Dilations seem to be an index of integrability. This result is clearly a step towards
the comprehension of the structure of symmetries for difference equations and is the reason
why in the case of non-integrable nonlinear equations [8] one has not been able to obtain
extended Lie point symmetries.

Lie point symmetries for differential equations as well as intrinsic Lie point symmetries
for discrete equations are characterized by the fact that one can use them to perform symmetry
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reduction and provide explicit solutions. In the case of generalized symmetries or extended
Lie point symmetries, we are faced with nonlinear equations, sometimes not easily reducible
to ordinary difference equations and surely not expressible in terms of known transcendents
or functions.

In the case of integrable differential equations, symmetry reduction provides Painlevé
transcendents. In the case of discrete equations, discrete Painlevé transcendents have been
obtained by using other techniques (see, for instance, the articles on this topic contained in
section 5 of [17] and references therein) as only a few symmetries were known and those
usually very trivial ones. Some results in the direction of constructing discrete Painlevé
transcendents by starting from integrable discrete equations have been obtained [18, 19] by
considering reduction byt-invariance for non-isospectral discrete equations. Clearly, the
construction presented here allows us to explain the approach considered before and will
permit the construction of new Painlevé equations. Work along these lines is in progress.
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